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ABSTRACT

The spectral properties of Jacobi and periodic Jacobi matrices
are analyzed and algorithms for the construction of Jacobi and periodic
Jacobi matrices with prescribed spectra are presented. Numerical evidence
demonstrates that these algorithms are of practical utility. These algo-
rithms have been used in studies of the periodic Toda lattice, and might
also be used in studies of inverse eigenvalue problems for Sturm-Louiville

equations and Hill's equation.
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Significance and Explanation

In this report we present algorithms which solve two inverse eigenvalue
problems that arise in matrix theory. Computational evidence is presented
that demonstrates that these algorithms are of practical utility.

The first inverse eigenvalue problem considers what additional information
uniquely determines the entries of a Jacobi matrix if we know its eigenvalues.
Recall that a Jacobi matrix is a real, symmetric tridiagonal matrix whose next
to diagonal entries are positive.

The second inverse eigenvalue problem considers what additional information
uniquely determines the entries of a periodic Jacobi matrix if we know its
cigenvalues. A periodic Jacobi matrix is obtained by replacing the entries in
the upper right and lower left corners of a Jacobi matrix by the same positive
number.

Inverse eigenvalue problems of this nature arise in mathematical physics.
For example, the construction of a linear array of masses interconnected by
springs with prescirbed normal modes of vibration leads to such inverse eigen-
value problems. In addition, the construction of a ladder network of inductors
ind capacitors with prescribed transmission characteristics also leads to such
inverse eigenvalue problems.

Finally, FORTRAN subroutines which implement these algorithms are presented

in an appendix.
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THE CONSTRUCTION OF JACOBI AND PERIODIC JACOBI MATRICES

WITH PRESCRIBED SPECTRA

Warren E. Ferguson, Jr.

l. Introduction. A periodic Jacobi matrix is any real, symmetric matrix

of the form

( % 5 by
bl G
L = where b, >0 Vi
b, »
0 N-1
bN hN-l aN

This paper shows how one can construct a periodic Jacobi matrix with prescribed
For example, there is a family of periodic Jacobi matrices with 1\,

spectra.
as eigenvalues if and only if the numbers \1'“'"\N are real and can

cee )y
bhe ordered so that

by Ny ¥ hg ¥ Ny 3 A B v

Similar problems have been studied by other authors [2, 12).

The results presented in this paper are based upon an analysis of the spectral
The main tool in this analysis is the

properties of periodic Jacobi matrices.
Recall that a Jacobi

knowledge of the spectral properties of Jacobi matrices.
matrix is any real, symmetric tridiagonal matrix whose next to diagonal entries are
positive. Our cannonical Jacobi matrix will be the matrix obtained by deleting
from L. the last row and column, that is

o SR 0
By
J = where hi 20 v 1.
bN-Z
L 0 bN-Z_‘ aN_1_

An algorithm which constructs a Jacobi matrix with prescribed spectra is
presented in Theorem 2. This algorithm is derived from the fact that any real,
symmetric matrix has real eigenvalues and a corresponding full set of real,

We hasten to point out that essentially the same

orthonormal eigenvectors.
Similar problems have been

algorithm was presented by de Boor and Golub [3].
studied by other authors (8, 9].
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The spectral properties of periodic Jacobi matrices are considered in
Section 3. The results presented in this section are derived from a matrix
analog of Floquet theory [11]. In Section 4 we use these results to charac-
terize the family of periodic Jacobi matrices with prescribed spectra.

We present the results of several numerical experiments in Section 5.
These results demonstrate that the algorithms presented in Theorems 2 and 6
¢re of practical utility. Indeed, these algorithms have been used in performing
numerical experiments on the periodic Toda lattice [4]. In Section 6 we con-
clude the paper with several comments.

2. Spectral Properties of Jacobi Matrices. In this section we will con-
sider the spectral properties of the Jacobi matrix
( .ll hl o
1§
1
J = \\\\\\\\\\bN—Z where b, > 0 v i
. ¢ Py-2%N-1-

Observe that J is a real, symmetric matrix. Consequently J has real eigen-
values Mpe***,uy-1 and a corresponding set Yy,*°*,¥y-1 ©of real, orthonormal
eigenvectors [13,14]. If Y denotes the matrix whose it column is Yj then
Y is an orthogonal matrix =nd

JY = ¥Yb where D = (1)

0 “N-l

Many important relationships between the eigenvalues and eigenvectors of J
can be derived from the representation

G =) = Elut=n) T (2)

of the resolvent of J . For example, by comparing the entries in row 1,
column N-1 of (2) we arrive at the identity

o N-1 (A‘(U) 3 ‘)
o S ) 1 = 1,k N-L.k n
k k
Here
wlu) = det (u1=J) (3.b)

is the characteristic polynomial of J and Yj,j denotes the entry of Y in
row i , column j. Another important identity, used by Stieltjes in his treat-
ment of inverse eigenvalue problems, can be derived from (2) by comparing the
entries in row 1, column 1 (or row N-1, column N-1.)
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In the work that follows we will demonstrate that the e¢ntries of J
be recovered from the entries on the diagonal of D
Before we describe this process let us introduce

Definition 1: (a) The Jacobi matrix J

{u,y} if and only if
(1) Mye®®teMy_, are the eigenvalues of J , and
(2) YyettteYy_y are the first components of a set

Yl’ ...'YN_l

J corresponding

(b) The data
R N-1
(2) yl'...’yN_l

sum to one.

{u,y} is
yece,u are

are

We feel justified in using the words "characterize" and "compatible" in this
manner because the following theorem is true.

Theorem 2:

each set of compatible data {u,y}

The entries (a,b) of this Jacobi matrix are computed by the algorithm:
L. ¥ . =0 Vv j
0,3 3
2. Y. = Y v j
s )
3le For i =1,¢¢¢,N=-2
N-1 2
% g El MY i,k
2 N-1 2
4 T %} AL e e 7 Sl T R
1 §
b Tl e Y Mgy ,gt ¥
7 Next i
N~1 2
Be By = El Mefn-1,k °

Proof:
lemmas.

of real, orthonormal eigenvectors of

Data characterizing a Jacobi matrix is compatible.
characterizes a unique Jacobi matrix J .

The proof of this theorem will be presented as a sequence of three

can
and in the first row of Y
the following:

is characterized by the data

to

.

Ul'...'uN"l
compatible if and only if
real, distinct numbers, and

real, nonzero numbers whose squares

Furthermore




Lamma 2, 1:

Data characterizing a Jacobi matrix is compatible.

Proof: Let the Jacobi matrix 0  be characterized by the data {y,yv}. The
w'soare necessarily real because they ave the eigenvalues of a real, Symnetyic
matrix. By definition the y's are real, and their squares sum to one becausc

they may be considered to be the entries in the first row of the orthogonal matrix

Lemma 2, 2: {u,y!

Given campatible data

e i
Fram the compatibility ot the data we inter that

the algorithm ot

Y in (1), Consider the limiting form of the identity (3) as u  tends to 4
I @ were a repeated eilgenvalue then w'(uy) = 0 and s0 we would be forced to
conclude that  byes shy-a® 0, which is impossible because each by >0 Frherefore
the u's are distinct and, as 1 tends to iy , we infer that
b, ess K = w'i{n. ) Y Y v ()
1 N-2 i M O I8 B .
Consequently the y's  are nonzero because Yy \‘l y L

y

Theorem

the entries  (a,b)  of a Jacobi matrix J characterized by the data {(u N,
Proof: First, we infer that this algorithm computes the entries (a,bh)  of
same Jacobt matrix 0 only it the value of b, computed in step % is never zero

8) O 1t bl,"',l\\-ﬁl » 0
but b, 0 for same { N-1 then step © implies
= = r -
a, b ol [¥, ]  §
\f 1 ‘! | I "3
b " f [ |
{ |
BREBEEN ! v )
| h | ! ’ ) :' I
! =\ | , | |
| | { |
| 0 | ‘ | ; !
| |
- o B B
L t-1 -l '._":\_i 'L f,i_’
But this is impossible, for no matrix of order o N-1 has N=-1 distinct
elgenvalues,

Second, we will demonstrate that the numbers Yi, v camputed by this algo-
rithm form the entries of an orthogonal matrix Y , that is the rows ot Y
satistfy the orthonormality relations

s Y \ o | 5)
: . \ S ) Levves,d H
1 . 1.k L+ :
X
and i l,*¢¢,N=1. From the compatibility of the data {u,y}! we infer that
(%) 1s true for 1 1. If (S) is true for i 1,0¢¢,0 then the following
argument demonstrates that it is also true for i t+1. Clearly steps 5 and 6
imply that (%) is true for | t+1. PFor j < t step 6 implies that
=3y Y . o B ol R REee -b, .8, )
“1 t+l1,k .k b 1 | W P A, T S A =1 ¢=1,3
K N X
,x.A
i ——— ——— -

omg ntes
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F e
The right side of this equality is zero for j = U Dbecause step 4 was executed,
and it 1s zero for } « U Dbecause step O implies that
1
\N - - \. \. 3N - 1 ‘. l‘ \, + “ \l ‘ l‘ \' ‘ - l‘ (\
: i&l °E LK 3.k i\l \‘,k[ j=1"j=1,k } Jak s 2 O R s

Third, we will demonstrate that the data {u,y! characterizes J . 1t wil]
be sufficient to prove that the matrices J,Y constructed by this algorithm
satisfy (1). Step 6 implies that JY = YD if we can show that the numbers

¢ Py ' R ; Vo
Yaog & Gy = e 1,3 N2 02,3 )

are zero. The techniques presented in the previous paragraph can be used to dem
onstrate that

Vthl Y ¥y 5 = 0 for 4§ = 1,%+s,N-1 .
‘ N,k LK
K

Since the rows of Y form a real, orthonormal basis we infer that

b . Q Vo
N, )
[
Lemma .).3: Each set of campatible data characterizes at most one Jacobhi

matrix.

Proof: Let J be any Jacobi matrix characterized by the compatible datao
{u,y}. Then y, ,se¢,¥y = are the t;ir::t component s of a set \:1 e gy Of
real, orthonormal ecigenvectors ot J corresponding to the eigenvalues 1y,
'"N—l .1t Y denotes the matrix whose '\-'-ﬂ column is Y .
gonal matrix and

JY =YD wher e D \\\\\ . <
|

We will now prove that the entries (a,b) of J are identical to the entries
(a,b) of the Jacobi matrix J computed by the algorithm presented in Theorem O

i then Y ig an ortho

The entries Y i, of Y satisfy the orthonomality relations

=l 5 . v 3
g { %
i\‘ 1.,k R i3 !
iy T ; : : i 1
because Y Y E s 'he entries Y, ; of Y also satisfy the recurrence relat
1,
I g P W ¥ .Y, e a4 0, ¥ ¥V 1,]
i=1"1i=1,3 S, ¥ 3%k,;) } X33
wvhere
T i 0 and A Q A
Q,) N,1
because I Y Y D. When the recurrence relation is multiplied by Yy and

result s summed over 1 we find, using the orthonomality relations, taat




The recurrence relation also implies that

1 T .

Y. - iy =-pn )Y . b ¥ ) v
i+l,) by Sy il W 0 b 7

and, when this identity is squared and the rvesult i

5 summed over |
nomality relations imply that

, the ortho-

A

. 2 N =1 p
) e

b = M - \.. ; =% .
¢ " & Cuy = a¥, o = B aYia1x

Starting with the fact that

Y Y V3

X3 =9
1t 15 easily shown by induction, following the sequence of camputations presented
in the algorithm, that the entries (a,b) of J

are itdentical to the entries
(a,bh) ot J

1. _Spectral Properties of Periodic Jacobi Matrices. In this section we

will considec the spectral properties of the periodic Jacobi matrix

! X B,
| % 9 N |
' "1\ ; ;
1 i | whet e h, 2 © 8 TR
h ’ E
; 0 N-1 |
N T W

Throughout this section we will use J to represent the Jacobi matrix obtained

by deleting from [ the last row and column.

Observe that I is a real, symmetric matrix. Conseqquent 1y 1 has real
clgenvalues and corresponding set ot real, orthonormal eigenvectors i Y
Let 2z Dbe an eigenvector of L corresponding to the eigenvalue |\
components 2. of 2z form a nontrivial solution of the
(b b )

Q N

« Then the

recurrence relation

z + a.2. + b. g g, Vv 3
i=1 i=-1 ) S AR | A

which satisfies the boundary conditions

Z. = £ and b4 g

N ~0 N+1 1
By analogy with Floquet theory, which analyzes the analogous problem fon ordinary
differential equations [11], let us consider the nontrivial

solutions of the recur-
rence relation which satisfy the boundary conditions

2 pa and 2z PR, s
N o AN N+ \
Here the parameter o is called the Floquet multiplier of 2

2 . This problem has
only the trivial solution when o 0 , while for ¢ # 0 a nontrivial solution

exists 1f and only if 1  is an eigenvalue of the matrix

-




oh b
N N-1 °N

With these facts in mind let us introduce the following:

Definition 3: Let J Dbe characterized by the data {u,y! and have w(y)
as its characteristic polynomial, Then the !‘lml\u\( mult ik-l 1ers PYe " Py ot

L corresponding to gy, ccc,iyoy  are the numbers defined by the relation

b, sss N 0.0 ' .} by e (o)
1 N ) ) N j

-

Theorem d: The characteristic polynamial of L admits the representation

L ;
det (\1-1L ) B owse B ANEXY = foe=)]) 'y
LA 5 N N ¢ ( { ‘\) {

where A()), called the discriminant of L , is independent of p . The Floquet

multipliers ¢ 1 ¥R Oy of 1 corresponding to the eigenvalues Hye®®telin-1
 J satisfy the relation

)

he eilgenvalues N j RE X ot 1 are real and can be ordered so that

Proof: Using elementary properties of determinants it is not hard to demon

i
e de \1- ) -h o L .
T ot (\ I‘ !‘ !‘N (1 A )

When both sides are integrated with respect to p we find that

: : &0
det (\I-L ) !\1--- B AGA) = (pt=1)} .

) course the constant of integration !‘1 sse b A()) is necessarily independent

\

Let J Dbe characterized by the data t(u,yt. Then vyj,***,¥ny-3 are the
firat components of a set Yy,**s,¥Yy-1 of real, orthonormal cigenvectors ot O
corresponding to its eigenvalues uyp,***,lUN-1 - Let Y; 3 denote the 1th com-
ponent of  Y: . From the definition (6) of the Floquet multipliers and the iden

tity (4) we infer that

P

RS e

S




- - . -
Y { ¥
| Y l O
| | | { 2
1 = M- ‘ ¥ oy,
§ | | i { [
\
i ' Q ‘ Q (
Conseqquent ly 3 is an eigenvalue of L for each i and we infer from (7)
that (8) is true. s

from the definition (6) of the Floquet multipliers we deduce that

o', )¢ < Q ¥ N
 lhaf

when the eigenvalues of J are ordered so that

&8 > 3

By ¥ N-1

then we infer trom (8) that

1
(-1)"4&lu,) > 2 v o)
g
: 1 X
because the magnitude of p + = 1is never less than two. Consequently the eigen-
values \.1.“.,\\, of 1., which are the roots of A{A) = 2, are real and can be
ordered so that
\ \ b = N > X .«
1 ) 3 4 5
-1 N i 5 e
because the coefficient (b‘---!\\l\ of X in A()) is positive. =
A typical discriminant for a periodic Jocobi matrix L of order N 6 is

illustrated in Figure 1. 1In this figure we depict the relationship between the
eigenvalues \j,**+,\y of L and the Floguet multipliers py,**°,on-y of L cor-
responding to the eigenvalues g, N1 ef J

Let us introduce the following:

Definition 5: (a) The periodic Jacobi matrix I is characterized by the
data { A,B,u,p! if and only if

(3) Hpett el g Are the eigenvalues of J , and
(4) Sttt reon- are the Floquet multipliers of 1L corresponding to

) SRR
(b) The data {A,B,u,p! is compatible if and only if
(1) A is a real number,

(2) B is a real, positive number,

(3 Yyt e '.'"\l-l are real, distinct numbers, and
7 B LA Y are real numbers which satisfy w'(u)o, <« 0 ¥ j
1 N-1 i i 1
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‘compatible" in

We feel justified in using the words "characterize" and

manner because the following theorem is true.

Theorem 6: Data characterizing a periodic Jacobi matrix is compatible.

Furthermore, each set of compatible data {A,B,u,p} characterizes a unique j

dic Jacobi matrix L . The entries (a,b) of this periodic Jacobi matrix are

computed by the algorithm:

\ b Y

1 B -
2. g, 7 e r— v 3
. Pyt iuy

3. Recover J from the data {u,y!

W Y \ - Yeoe (1= )
it! ¢ (u Yy (1 g1

Proof : The proof of this theorem will be presented as a sequence
three lemmas.
Lemma 6.1: Data characterizing a periodic Jacobi matrix is campatible

Proot: Let the periodic Jacobi matrix L be characterized by the dat
{A,B,u,p}l. Clearly A 1is a real number because it is a sum of real numbors,

while B 1is a real, positive number because it is a product of real, positiv

Al
of the Jacobi matrix J . while the definition ( 6 ) of the p's makes

obvious that they are real, nonzero numbers which satisfy \.\'(:.i‘.a < 0 Ton
: . s £ )
because wl) is also the characteristic polynamial of J .
Lemma ©.2: Given compatible data {A,B,u,p! the algorithm of Theorem

computes the entries (a,b) of a periodic Jacobi matrix L characterizod by
data {A,B,u,p!l.

Proof: The data {u,y}! used in step 3 is compatible, therefore it

that this algorithm computes the entries (a,b) of some periodic Jacobi matr:

Let I be characterized by the data {S\,R,u,ﬁ‘ . From steps 4 and 5 it is

that A A and B B. 1In view of Theorem 2 we know that J is charact v
the data {u,y} . Therefore uy = uy for all j and from the definition of
Floquet multipliers we know that
p | Al
B g o' lu.) B, V. L
) 1 h 1

Step 2 therefore implies that Py = i, for all 3 =
]

©

e u's are real, distinct numbers because they are the eigenvilu:

il

\ O

* i
il

SEET ALY, W S
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Lemma 6.3: Each set of compatible data characterizes at most one periodic
Jacobi matrix.

Proof : Let L be any periodic Jacobi matrix characterized by the compatible
data {A,B,u,p}! . Let the Jacobi matrix J , obtained by deleting from L the
last row and column, be characterized by the data {u,y} . Without loss of gener-

ality we may assume that each y. 1is positive, for if y. is the first component
of an eigenvector of J thén -y. is the first component of the eigenvector

e
=Yy of J . We wili now prove that L%e entries (a,b) of L are identical to
the entries (a,b) of the periodic Jacobi matrix I constructed by the algorithm
of Theorem 6.

By definition the Floquet multipliers 51""'5N-1 of T corresponding to
Hyee°*,uy-1 satisfy the relationship
~20 a2 :
B = -pjm'(uj) bN yj e

The sum of the squares of the y's equals one because the data [u,y} is compat-
ible, therefore

~2 V-1 B < 1 B '
B == e and y. = ——-//L St ]

L 0. w" '
N kl 'k‘ (ttk) Jj bN pjlu (uj)
In view of steps 1 and 2 we infer that by = by and Qj = vo for all j. Since
both J and J are characterized by the same data then Theorem 2 implies that

J = J. Finally, steps 4 and 5 imply that by_j = by_; and ag = an -

4. Periodic Jacobi Matrices with Prescribed Spectra. With these basic
facts established let us now consider how we can characterize the family of perio-

dic Jacobi matrices whose eigenvalues are Al,---,xN c

Let I be a periodic Jacobi matrix characterized by the data {A,B,y,pt.
Then Al,--o,AN are the eigenvalues of I if and only if the discriminant A())
of L admits the representation

1
A(A) = 2 + B (A-Al)'°'(A—AN) 2

Therefore the problem of characterizing the family of periodic Jacobi matrices
with prescribed spectra is intimately related to the problem of characterizing the
family of periodic Jacobi matrices with prescribed discriminant. Let us introduce
the following:

Definition 7: For each polynomial p(X) 1let F(p) denote the family of
periodic Jacobi matrices whose discriminant is p(X\)

The problem of characterizing which periodic Jacobi matrices belong to F(p) is
answered in the following:




'_I‘hvnxom 8: Let p () be a polynomial ot degree N o The data 1{A,B,u,i
characterizes a member of F(p) if and only ift:

(1) the data {A,B,u,p! 1is compatible,

] N N~-1 :
(2) p()) = B (N7 = A A + lower powers of )\ ] , and
1
£3) p(nj) = 0y e A
"5
Furthermore, F(n) 1is nonempty if and only if
(4) the coefficient of A in p(\) is positive, and

(5) p()) has local extrema at N-1 real, distinct points

: | : :
W, 2 iaal with -1 ) > 2 v 5
] \N—l ( ) [‘(\ l) 2 ]
Proof: The proof of this theorem will be presented as a sequence of two
lemmas.
.
Lemma 8.1: The data {A,B,u,p! characterizes a member of F(p) 1if and

only if conditions (1,2,3) of Theorem 8 are satistied.

Proof: If the data {A,B,,n! characterizes a member of F(p) then
Theorems 4 and 6 demonstrate that conditions (1,2,3) of Theorem 8 are satisfied.

Let us now suppose that conditions (1,2,3) of Theorem 8 are satist ied.  Let
A(N)  be the discriminant of the periodic Jacobi matrix charactevized by the data
{A,B,u,pt. Now

q) A - pOY)

§ ey N-1 N ;
15 a polynamial of degree N-2 because the coefficients of \ v A 1Th 2 TR O 9 ) 1S

p(\)  agree. Theorem 4 also implies that q(n.‘) 0 vV 3 and so
aq(\) 0
because the only polynomial of degree N-=2 which is zero at N-1 distinct point:

is the trivial polynomial. Consequently the data {A,B,u,p}! characterizes a
member of  F(p) .

-
Lemma 8.2: F(p) is nonempty it and only if conditions (4,51 of Theorem 8
are satisfied.
proof : 1f F(p) is nonempty then Lemma 8.1 and the mean-value theorem can

be used to demonstrate that conditions (4,5) of Theorem 8 are sat 1t ied

Let us now suppose that condit ions (4,5) of Theorem 8 are satisfied. Let A,B
be determined so that

},(\) il;[\N - A \N—l t lower powers of v




and "1'.”'"N—1 be solutions of
1 ;
p(v.) = p, + — " T

Then the data {A,B,v,p} is compatible and from Lemma 8.1 we infer that the
data {A,B,v,p! characterizes a member of F(p)

Using Theorem 8 it is not hard to prove the following:

Corollary 9: The periodic Jacobi matrix IL has A ,ee+, )

1 as its eigen-
values if and only if

N

L o« u FlAL)

B
B~0
where A (1) 2 + ;1*- (N\=\_)ee«(X=) ). Furthermore, there is a periodic Jacobi

matrix with )\ sttt \y as its eigenvalues if and only if the numbers \y,«++, \y
can be ordered so that

5.  Numerical Experiments. Let us now present the results of several

numerical experiments. These experiments were carried out on a UNIVAC 1110 in
single precision floating point arithmetic (27 bit mantissa) using FORTRAN ver-
sions of the algorithms presented in Theorems 2 and 6 .

In the first experiment we test the algorithm presented in Theorem 2. The
results of this experiment are presented in Table 1. Observe that this algorithm
has difficulty in recovering the Jacobi matrix described in Example 3

Experiment 1:

1. Select a Jacobi matrix J of order N-1.

3

2. Campute the data {y,y} characterizing J [13, 14, 15]:

(a) use pisection to compute the y's , and

(b) use inverse iteration to compute the y's

.

3. Use the algorithm presented in Theorem 2 to reconstruct the Jacobi
matrix J characterized by the data {y,y}.

4. output the error |0 - Jll where

Ial = max |a, .| .
i
1,)

In the second experiment we test the algorithm presented in Theorem 6. The
results of this experiment are presented in Table 2. Observe that the Jacobi
matrices used in the examples of Experiment 1 are obtained by deletina the last
row and column from the periodic Jacobi matrix used in the corresponding examp!es
of Experiment 2,




Experiment 2
1. Select a periodic Jacobi matrix L of order N

). Compute the data {A,B,u,p}! characterizing L

(a) use the obvious sum to compute A ,
(L) se the obvious product to compute B ,

(¢) compute the data {u,y} characterizing J as described in
Step 2 of Experiment 1, and

(d) compute the p's using Equation (6).
13 1

3. Use the algorithm presented in Theorem 6 to reconstruct the periodic
Jacobi matrix I. characterized by the data {A,B,yu,p!

4. oOutput the error |L-Ll where

Al = max ]ni,] g
i, )
In both of these experiments we have not worked with matrices of order

N 30.  The reason why we have not worked with matrices of order N > 30 may
be explained as follows. In Example 2 of Experiment 2 some of the components of
y in the data {j,y}! become smaller as N increases. For example, the small-
est component of y  changes from 2x10"9 for N = 15 to 2x10720 for N = 30.
Since the Floquet multipliers p depend on the squares of the data y wo wrll
run into underflow problems when N > 30 . The immediate remedy for this under-
flow problem is the use of logarithms in the computation of the Floquet mult:-
pliers. However, underflow also occurs in the computation of y when N DS
consequently the use of logarithms is not a panacea.

6. Comnents.  Let  w(y)  be the characteristic polynomial of the Jacobi

matrix J obtained from J by deleting the first row and column. By compar ina
the entries of (2) in row 1, column 1 we find that

N-1  wlp) 2
T i S
K M “k ’

This identity was used by Stieltjes in his study of inverse eigenvalue problems.
As u tends to “i we deduce that

5]

s Vi
v J

—

wli,) = w' () Y
I 1

From this tdentity we infer that the eigenvalues of J strictly interlace those
of J . Furthermore, from the eigenvalues of J and J we can recover he data
{p,y} characterizing J and hence J itself.

It is interesting to note that the algorithm presented in Theorem 2 s uoed
in some versions of the implicit shift QR algorithm [13]). These versions of
the QR algorithm make use of the fact that if B = 0AQH, where B ic an unve
duced upper Hessenberg matrix and ¢ 1is a unitary matrix, then the entrics of B
and  ©  are uniquely determined from the entries of A and the entries in the
first row of @ . In our application A =D, B=J and Q = Y.

]Fe
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We can also recover the Jacobi matrix J from the cigenvalues and the last
components of the corresponding real, orthonormal eigenvectors of J . To under-
stand why let us consider the permutation matrix

2
We find that S = 1 , therefore from Equation (1) we deduce that
(sJs) (sy) = (SY)D

Consequently the algorithm presented in Theorem 2 states that the entries of

— -

N-1 by-o 0
bN-Z
SIS =
b
1
i 0 b1 a1

can be recovered from the entries of D and the entries in the first row of SY,
that is the last row of Y .

It also appears that Theorem 2 can be extended to some class of band
matrices. For example, let the real, symmetric matrix

a, b1 c1 0
b1
N .
K = where ci >0 ¥ 1
“N-3
\ e
| o Tnesthez Pge1 |

have py,***, g1 as eigenvalues and Yjp,°*°*,¥Yy_) as the corresponding set of
real, orthonormal eigenvectors. If Y denotes the matrix whose jED_column is

Yj then Y 1is an orthogonal matrix and

=l




Following the argument presented in Lemma 2.3 we arrive at an algoritim whic!
U OCOVven K fram the entries in D and in the first two rows of Y

'he paper by Golub and Welsch [7] outlines how one can modify the usual
algorithm and compute directly the data {yu,y} characterizing a Jacobi matrix ..

Furthermore, their paper also presents a matrix version of the celebrated Geltand
Levitan solution to the inverse eigenvalue problem for a class of Sturm-Liouvill.

prol 1em

'he paper by Kammerer [10] describes an algorithm that can be used to construct
a discriminant whose “"shape" is prescribed. By the "shape" of a discriminant wi
are referring to the value of the discriminant at each of its N-1 real, distinct
local extrema. For applications of Kammerer's algorithm to the periodic Toda

lattice we refer the reader to the forthcoming paper (4] .

seful infomation concerning properties of periodic Jaco™i matrices is con
tained in [1]. We would also like to state that the analysis presented in Sectior
! can be extended in the same generality to "anti-periodic" Jacobi matrices of the

L | i \ | where b Q0 v
-1 \ : e \l‘N_l ' 1
| -5 b .
oY N-1 N '

.f\«‘_l\‘nuwlvﬂmimvn!-‘. The author would like to thank Professor C. de Roor,
H. ¥laschka, G. Golub and D. MclLaughlin for several informative discussions.
Indeed, the results presented i1n this paper arose from work done with Flaschka
ind Mcbaughlin [4] on the periodic Toda lattice while the algorithm presented in
heorem 2 1s essentially the same algoritim presented by de Boor and Golub [3).
he derivation of the spectral properties of periodic Jacobi matrices depend:
quite heavily on the discrete version of Floquet theory as presented by Flaschka
and McLaughlin [5,6] and by van Moerbeke [12}.

he author would also like to thank the agencies which support the Mat hemat ic
csearch Center at the University of Wisconsin.,

ai B




N=6

riminant,

ise

D

1
’ 8

Mo




Example 1:

A(I) = =2 I = 1,¢¢¢,N=1
B(I) = 1 I« 1,vss N=3
: N Error
K
5 4\10'8
: -7
E B 10 2210
: -7
% 15 5x10
i -7
! 20 2x10
25 2310~
10 6x10"

Example 2:

A1) = (NH1=T)/N=2 T = 1,e++,N=1

R(I) = 1-(N-T)/N I = 1,¢e¢,N=2
N Error
5 4\10_a
10 1\10-7
-7
LS aN10
20 i\m'7
25 1\1(\‘7
-7
10 axl1o

Table 1: Results of Experiment 1.

-17=




Example 3:

A(I) = I/N - 2 I = 1,¢0+,N=1
R(I) = ] - I,/N I = 15...IN—2
N Error
-7
S 1x10
10 3\10-7
15 3\10-4
20 2\100
25 2\100
30 1\100

Table 1: Results of Experiment 1.
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Example 1:

Example 2:

A(I) = =2 I =1,¢+¢,N-1
B(I) = 1 I =1,%++,N=2
A(N) = 0
B(N-1) = B(N) =1

N Error

5 9x1078
10 5x10”
15 1x107°
20 2x10'6
25 3x107°
30 5x10”°
A(I) = (N+1-I)/N-2 I=1,++,N-1
B(I) = 1-(N-I)/N I=1,"-,N-2
A(N) = 0
B(N-1) = B(N) = 1

N Error

5 1x10”7
10 2x10”/

15 ax10”’
20 3x10_7
25 6x10"
30 ax10”"

Table 2 - Results of Experiment 2
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Example 3:

A(I) = IN=2 I=1,°*+,N-1
B(I) = 1 - I/ I=1,"**,N=2
A(N) = 0
B(N-1) = B(N) =1
N Error
5 ax10"°
10 1x10”7
15 1x107°
20 2x10°
25 ax10°
30 5'100

Table 2. Results of Experiment 2.
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8. Appendix

TSR ATy

In this section we present listings of several FORTRAN subroutines that

i the author used while performing various computational experiments. -
No warranties, expressed or implied, are made by the author that this :
program is free of error. It should not be relied on as the sole basis to i
solve a problem whose incorrect solution could result in injury tco person
or property. If the program is employed in such a manner, it is at the user's
k own risk and the author disclaims al: liability for such misuse. :
f
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sz NYaRy S:TTS i
i
1. SHIRRCHTTIAF AYAR| €0 ,X,Y%,P) :
- 18 REAL NMEMY, ey é
, CAULN /NTVTA, KOFRV,*PTS, YAANF (K1) ,PTVRF(RY) i
U. ¢ 1
<, ¢ FACNSTRICT THE ATVINEN NTFFERENCE TAR|F «*PT§ X“ANF , ATYNE « F
5. r QAARFN Ny THE ave AV R ¢Xe AYNN THE CORRESD O YNTIMA Fir LTI
T r VALIIFR ave, THFE NTYINFD PIFFFRENCE TARIF T8 CEMNTEDRFE h
R, r AT TuF POATYYT aDa
Q, r
16, r TCTYTALYE
P £ :
‘2. VPAYR = i
13, "N 4r Tz ,rOTR
XMARECTY = Y1)
'8, RIVAELTY = V(Y
1A, 1A £ TN IE
1? 5
‘A: ¢ NIRARIF SARYT TufF rgEQ
1Q, ¢
’u\. on In vs;‘;;‘vq
- NP 20 xsd, T
22, J = Texaet
an, TF (ARS(PaX NPNF (V) AF , ARS(PaY ARF (T#1)Y) AN TH Id
20, FYrH = yrANE (T
i 25, XMNADE (T & XROREL T+ YY)
2K, YMORE CJ¢1)Y & EYEM
- & FXf= = DTVRF (1Y
A, ATVDAFCTY = DIVOF( T+1)
29, NTVAF (1e1Y = FYCH
30, 2n CONTINUE
i 3 P RO COMTENTE
12, t
LR € QEYT 1'P TUF NTVINFT NYFEFRFNCFE TAR|F
34, &
35, AN §A J=2),\NPTS
35, N0 4p K=1,'PTS
37, T oz Kelaf
A, NIVAFR(TY = (NTVOF T4 1YaNTVYRF(TYY/C(YNDPF (K YaXi "DF (TYY
39, an FONTTINUF
a0, S COMTIMUE
41 &
ua: SETLON
4 C
3. Fen




‘e N Be Be Ne N Ke e B e Re IR ]

i N ]

i e |

o Ne e )

OAIAIEDIDN

R e

10

20

30

g
zzzz2 ETGEN ==sz3 ;
SURROUTINF FIGFN(M,A,B,MU,Y,D,W) 1
REAL A(NY,BENY,MUCNY,Y(N),DCN),W(N),LO,HT,MID 3
NATA NITS/10/ &

&

FOMPLITF THF FIGNEVALUES #MUx AND THE FIRSY COMPONENTS

*Yx OF ORTHONORMA| EIGENVECTORS OF THE JACORT MATRIX

AC1) R(1) 0
8(1) - .

) . L RA(Ne1)
0 R(Ne{) ACN)

N,W ... WORKING STORAGF VECTNRS OF LENGTH N |

NM{ = Neal
COMPLITE THFE MACHINF EPSILON

EPS = ¢,

FPS = EPS/2,

TEST = 1,4EPS

IF (TFST,GT,1,) GO TO 10
FPS = 2,%EPS

COMPUITE GFRSCHGORIN ROUNDS FNOR THE ETGENVALUES

GMIN = A(1) =« B(1)

GMAX = A(1) + R(1)

R 20 Ts2,NMy
GMIN = AMTNY (GMIN,A(T) = (R(T=1)+R(T)))
GMAX = AMAXI(GMAX,A(CTY ¢ (R(T=1)+R(T1)))

CANTYINUE

GMIN = AMINY(GMIN,A(N)=wR(NM1))

GMAX 3 AMAX{(AMAX,A(N)+R(NML))

STZF = AMAX{(ABS(GMIN),ARS(GMAX))

COMPUITE aMile AND w¥Yn
PN 120n Isy,N
COAMPLITE #xMII(T)Yx RY RISFCTION

#NIIMy , THF NIIMBER NF NFGATIVE DYAGOMAL ENTRTIES TN
THF LU FACTORIZATION OF «=MID & JACNRIw , COUNTS THE
NUMBFR NOF ETAENVALUES NF THE JACORY MATRIX GREATER
THAN aMTNg

.LO = GMIN

HY = GMAYX

ﬁIF = Nt.Ln

TEST = ST2F + NIF/2,

MID =2 ILO 4 NDTF/2,

TF (TFSY.IF.STZF\ GN TN KO
TFSY = FPS«aSTIZF

A = 0

ANC1Y 8 MTIN @ A(CY1Y

-24-~




T4,

101,
102,
103,
104,

'n Be R Be e e ]

no

S0

an

70

RN

90

100
110

120

EzeER FYGFN £22eEX

TF (ABS(N(CY)) LT, TEST) N(1) m STIGN(TEST,N (1))
TF (D(1Y,LT,0,) NUM & NUMeI
O un J=mP,N
NEIY 8 (MTD @ A(J)) = R(J=i)waw2/D(J=1)
TF CARS(D(J))LT,TEST) ND(J) = SIGN(TEST,N(J))
17 (PETY LT,0,) NUM = NUIMet
CONTTNUF
TF (NUM_GE,T) 1LO = MID
TE (NUM_LT,T) HT = MTD
a0 TR 30

COMPIITE #Y(T)Y® RY TNVFRSF TTFRATIOM

THF NTIAGNNAL FNTRIFS OF THWF LU FACTYORIZATION NF
«MTD @ JACNRI« HAVF REEN COMPUTED ABOVE

Weyy = 1,
RO A0 T2, M
WeTry = 0,
COMTINUF
ANO1910 TT3,NTITS
RO 70 Tmt ,NMY
W(T#1) 2 W(I+1) + B(I)awW(J)/D(I)
CANTINUF
WENY 3 W(IN)/D(N)
N AN JRI,NMY
J 3 Ne IR
ACT) s (W(J) ¢ B(JYaw(det)Y/0 )
COANTINUE
StiM = 0,
NN an J=q,N
St = SUIM ¢ wW(T)wwp
COMTYINUE
SUM = SART(SUIMY
NN 100 JI3y,N
w(JY = W TY/SHM
CANTTINUIE
COMTTINIFE

MIICTY = MTID
Y(T) 3 W(Y)

CAONTTINUF
RFETUIRN

ENR

-25~
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sz FA| Q7 gzace

, FUNCYTIAN EAL QY (AR, TN ,F VAL LF,YELAR)
2, ¢

S. ¢ TN THFE TATERVAL RETWFFN wlde AND aRa COMPUTFE TO AN ACCQACY
a, ¢ eTAL e THE [ NCEATINN oFALSTe WHFRF aFae ASSUMFS «VALIIFe,

Se. ¢ TF UPON RFTHRN

6, ¢

e ¢ TELAG = v ., THFN «F AL STe wWAS FAUND TA AN AFCHRACY NF @Y e
R c D s.. THEN aTOL & WAS NEQATYVF

Q, ¢ Vosee THEN F(X)aVALIIF HA® TWUF SAME QTR AT YzA,R
10, C

1. ¢ TF aTNl e T® 76Q0 THEN aFA[ STa T8 FOUND TN MACHINE PRECTSTAS
12, c

1y, TFLAG = 1

14, c

{s. o CHFCX LFETY FANOAINTY ENR A 2FRN

16,

17, FALST 3 AMTN{(A,R)

1A, Fi = F(FAISTY = VALIIF

19, TF (FL . FR,0,) RFTURY
20, X{ = FALS?
21, TESY = F

22, ¢ i

2%, ¢ CHECK RIGMY ENNPOTINT FOR A Z2FRN

24, r

2s, FALST = AMAX{(A,R)Y

26, F2 = F(FALSTY « VALIE

27, IF (F2,EN,0,) RETURN

28, X2 = FALST

29, ¢

30, ¢ CHFCX FNR RFASONARIF #TN| w

3, c

32, IF (TNL,GF,0,) GO TN (0
3. TFLAG = 2
sa, RETIIRN
15. ¢
34, ¢ CHECK FORQ STAN CMANALF

3 &

A, 1A TF (FLaSTAN(L,,F2Y, LT, 0,Y GO 7N 20

19, TELAG = %

a0, QF TUIRN

at1, c
az, c LINFAR TMTERPOLATINN HEFN TA CAMDPLTE APDRAXTMATE | NCaTTNN
ax, c AF TWF ZERN

4o, c
us, 20 SAVF = TESQY

as, RATIN 3 F1/(FlaFP)

av, FALST 3 X1 ¢ RATINa(XPeX1)

an c
a9, c CHFCK FOR TERUNINATTON
50, r
Ste TF ¢ CXPeN Y L F T L@ MAYY (A8 (Y1), AR (XDIYY Y QJFTHRN
$?. ¢
83, r CHFEOX TF QUFSS FORQ 2FQN T8 AFPCEPTARF
Su, r
a5, TE € (PO BT YAt PRRL ST LY X8y Y 6 1A S
A, ¢
57, r 1F TWRE VIARATST 1S AL &N NARPFOTAO) | TUFY 4T 4 T8 TN Q14|

- =




SA,
S9,
an,
61,
&2,
63,
64,
hS,
hb,
67,
68,
bqg
70,
1.
72,
73,

s,
e,
17,
78,
19,
a0,

i e Ia |

11

40

sn

60

s=zxs FAILST sss==

AMD aF Al STa TS THE QFST THAT CAM RF AANF

FALST = X1 + ,Sa(X2eX1)
TF ( (FALST,LF,X1),0R, (FALST GF ¥2) ) RETIIRH

LIPRATE TNFNRWATTIONON

TFSY = F(FALST) = VALIIF
IF CTESTaSTANCY,,F1)) 40,50,60

X2 ® FALST

F?2 3 TESY

TF (TFSTaSTGV(Y,,SAVFY AT, 0,) F1 = _RaF)
GO T~ 20

RETIIRN

X1 = FA| ST

F1 = TESTY

TF CTESTaSTON(1,,SAVFY 6T, 0,) F2 = ,ReF)
6o oTA 20

END
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SZRES JACUNR g EEs

i SURRNITINF JACAR(N, A, R, M1, Y, W ,wd)
- REAL ACMY, AN, MUY, YEN) WL (N), N2 (M)
3.
a4, CONMSTRIUCY THF FNTRIES (A,R) NF Ao JACNRY MATRTX
1
A, A(1) R(C1) 0
7. acy) 2 g
RQ L] L L
E °l ) . nf”'l‘
{ 10, o R(Nei) AC(N)
12, WHFRF YcI) 18 THE FIRST COMPONENT NF A NORMALTZFN

FIGENVECTOR NF THE JACORT MATRIX CARRESPONDING TO THF
FIGENVALUF  Mucd)
WwE ASSUME THAT THRE MU'S ARE REAL,DISTINCTY NUMBERS AND
THF  Y'S ARF REAL,NONZFRO NIIMAERS WHOSE SQUARES SiM TN
ANF,

Wwi,W> ,,, WORKING STNRAGE VECTORS NF LENGTN N

IF THE LISER NOES NOT NEEN Y TO BE SAVEND THEN CALL T™IS
PROGRAM WITH THF Wl ARGUMENT EQUAL TO VY

DOODIOIDIONDIOIITIIIDIIDIDIDIDAND

ANM{ = Nei

in B ]

INTTYALTZE

~

PO 10 T=1,N
WL(TY = Y(T)
w2(l) = 0,

10 CANTTINUF

RTMY =2 0,
AN 80 Tt ,NMY

COMPUTE #A(T)w

e e B |

ACT) 3 0,
nO 20 Kay,N
ACTY & ACT) ¢ MUCK)@W] (K)an2
20 FONTINUE

COAMPLITF «R(T)w

i Ee R ]

R(T) s 0,
rO 3A K=, N
T @8 (MUCKI@A(TY) o (K) @« RITM{aWw2(K)
BR(T) = A(T) ¢ Tew?
10 COMNTYINIE
ACTY = SART(R(TY)

i B ]

COAVPLITE THF NFXT wYe

AN a0 Key,0
T o2 (MR YaA(TY)wa(K) @ ATV QWD (K)
WACKY = Wi(K)

-28-




a0

S0

a0

sassss JACOR sszss

Wi(X) 8 T/R(])
CONTINUF

ATMy = R(T)
COANYINUF

CAMPIITE wA(MNYw
ACN) = 0,
RN 60 X3y ,N
ACN) 8 A(N) ¢ MUCKYaW | (KYan?
CONTINUF
RFTLIRAN

END

-29-
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= Na Nal AOMOANNNHANDNAOOOND TN D

s la N

e e

10

20

3a

na

£3E8E2 AMMER  szsze2

SURDONUITIVE KACVMER( (P ,YX,V,w1,TF{ AR)

RFEAL X(MPLY, v (PLY, v NPy

FAMMAN /DTVTR/ KNFRV,NPTS, XNONF(S1),NTVAF (K1)
PATA °Y/l.!u1<°?b‘l§&/

FEXTFRNAL PO! YV

CIVES NSPTI) ATIANG NATA aVw COMPUTE THE AANRES aXae 0OF
THE UNTNNE TNTEROO| ATTAG POLYNONTAL «aP(XYa FOR WHTOH

1Y o0,aX(NPYY LT,
2) P(x(1YY = V(1)
1) NRrY(TVYI/NY = O

oo QLTO Y""‘o
FAR Y=1,,4es NP1
FOR "?DQOIOND‘-1 .

1F UBON RETHRN

1PLAG = .;. THEN EVERYTHIMNG WORKEN
2 ... THEN TWF NATA Ve RNES NAT OSCTLLATF

wi WARKTIANA STORAGE VECTOR OF (FMNATH  NPY

N & NPlet
CHNECK THAY THF DATA «Ve NSCT(LATFS

1FLAG = 2
0P & V(2) = V(1)
I® (0P ,EQR,0,) RFTIRN
no 106 1s2,N
nM s PP
AP B V(T1+1) = VI(T)
1F (NPASTGRN(EY,, MY GF,0,) RETURY
COMNTYIMUF

INTYTALTIZF

IFLAG = 1
Xe1) s 1,
NN 20 Ts2,N
X(T) B Sa(1 +CN8((Tat)aPT/NY)
CANTTNUE
X(NPLY = O,
CALL PTARL (NPY,Y,V,0,)

COMPITE THF “TNaVl OATNTS

SAVF 3 PYVAF (1Y
KRFRV = 0O
LT & I
YMTIN 3 YC(T) & Sa{Y T4V )aX(T))
ALY NTAQL (AP, X, V, X' TM
UMTN 3 VETY ¢ Sa(V(Tat eV (T))
«1eYyY = ‘ALSTIY(Y\.Y(Y0'30“..““(V\-V”Y“.YF9°‘
(allh & MRS

FANDUTE TUF PEQRG "F TuE NEATUATIVF

KNFOYy =

-3~




Sa,
59,
&0,
6‘.
62,
6%,
64,
6%,
6h,
67,

69,
70,
.
73,
Ta,
7S8.

(e B Na |

ale s

50

60

s3x33 KAMMFR gg=xs
Lala I ] tg?'\‘

CALL NTAR| (“PY,X,Vv,X(T))

“1(Tef) = FALST( 1 (Tat), N1 (TY,0,,PNLYV,N,,TERR)
CONTTNIIF

IIPNATE TWF ‘NnfFS§
AN AN T=2,N

X(T1) 8 wi(T=t)
CONTTIMNF

TEST FOR CAMPLFYTAN
CALL PTARL(NPY,X,V,N0,)
TF (ARS(SAVF) LF, ARS(NTIVPF(1))) RFTLRN
G0 YO 30

[ X\Ia}

-31-
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sg=z:ss PFIGFN sssES

, SIRRO! TINF PETGFN(N,A, R, M, QN0 , k], W)
2o REAL ACNY,RINY,MUCNY,RHO(NY, WL (MY, w2 (N)
3, c
4, € COMPULTE TWNF FTIGENVALUFS aMUa OF THE LEADING PRINCIPLF
8 c SURMATRIX NF THF PERIONIC JACORT MATRIX
(IR e
7. ¢ ACY) R(1) R(N)
], c R(Y)Y \ : "
Q' r [ ] L] [ ]
10, r 0 & . B(Net)
1%, £ [Ny R(Net) A(N)
12, ¢
) [, ¢ AND THETR CNRRESPONDING FLOQUET MILTTIPLTERS aRHQOa, THF
14, c SUM AF TWHF  A'S TS STAREDN TN MU(CNY  AND THE PRONDUCTY
| . ¢ AF TWF RA'S 1S STOREN TN  RWEO(NY
; 16, £
| § c N1, WD .., WORKING STYORAGE VECTORS NF LENGTWH N
| e, c
! |Q. NM{ 3 Nef
20, ¢
21, g FOMPUTE  mMIIENY  AND  RHO(NY
2?2, c
23, MUL(NY B 0,
24, RuUA(NY = 1,
28, AR 10 T=1,N
2h, MITENY 8 MUICMNY o AC(T)
a7, QHA(NY = RHN(CNYRR(T)
)l. 10 (ﬁntfmqe
29, €
10, € COMPLTE THF FIAFNVALIIFS eMiie AND THF FIRRY COMPONEATR
11, r «RNNe AF ORTHONORMAL FIGENVFCTNRS NF TWHF LFANIAG
32, c PRTIMCYIPLF SIUIAMATRIX
1, c
3“. caLL ‘TQFV(\‘“I.4,“,““,940,\11,#2\
xS, r
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SURROUITINE PIACOR(N, A, R, MU, RHO, nf,w2)

!e
- REAL ACNY,RENY,MUCN),REOIN) WL (N),W2(N)
X, c
; :. ¢ CONSTYRUCTY THE FNTRIES (A,RY NF A PFRYONTC JACORY MATRITX
: » ¢
i A, r A1) RC1)Y ACN)
% c Q) i . o
.0 (- L] [ ] L]
i 9, ¢ n , R A(Nel)
1 r AIN) R(Net) A(N)
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7 12, c WHERF  RNO(CTIY TS TWHF FLOQUEY MULTIPLIFR CORRESPONNING TN
: 13, ¢ THF FIGENVAL'IF  MU(CJY OF THF L FANTNG PRINCIOLE SUAMATRYY,
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! 1S, c NE THF  artg 18 STORED IN  RNMO(NY
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17, 3 wF ASS!UMF THAT THE SU'M OF THNEF  A'S TS REAL, TNE PRANLUCY
1A, ¢ OF THF  A'S TS REAL AND POSTTIVF, TWHE MU'S ARF RFAL ANN
19, L » NTISTINCY, AND THE  RNO'S ARF REAL AND NONZERD NUMARFRS
an, ¢ VNTICN SATISFY
21, ¢ '
22, ¢ AMFGA ( MUCJY YeRNOCIY LT, 0,
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24, ¢ AMEGA(Y) & (XeMU(1))n,, o(XoMU(NelY))
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; 29, r PROGRAM WITW TUE Wi ARGUMENT FAuUAL TO R0
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i A, AR T NMQ
! LI 2(TY ® MUI(Te})
! A LN 1N CONTINUE
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4d, 20 CONTINUE
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N SA Tei,AM2
NERV & NFRVa(MI(K)aw? (1))

CONTINUF

WICKY = SORT(@RNN(V)/(RHA(K)&PNERVYIY /R (M)
“2(X) = M)

CANTIMUE

RECOVFR THF |LFANTNR PRYNMCTIPLF SIAMATRTYX
CALL JACOR(CNMY,A,R, M1, w1 ,41,kD)
RFECAVFER aR(‘el)w
REMMLY = QWAO(NYZR(N)
NN 70 Ksp ,NM2
R(NM1) 3 R(AM1)Y/A(K)
CONTINUE
RFCOVER ad(‘'Iw
ACN) & MUCNY @ A(NMY)
NO A0 Km1 ,N“2
ACNY 3 A(N) @ A(K)
CAMTINUE
RETURN
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CAMMAY /RTVTAR/ KOFRV,* PTS, XA NNF(§1),NTVAF(S1)

COMPUITE THF VA!' [IF «2NLYVae NF THF TMNTFRPALATTING PO YNAMTAL
*KNFRVzAe MR TTS NFRIVATIVF aKPFRV=1« AT aXa RAIFN (O TwE
NESCRTIPTYINN ATVEM T:@ THE PTIVINFN NTFFFRFACF TAO|F
aNPTS], XNANF ,NTVNF «

HORNFRIS A[ANRTTHM T& IREA TN COMPIITF TWF VAL IIF REAUTRFN,

ALY 3 0,
neALY = 0,
AN A T=21,NPTS
APALY 3 PALY & (XeXNONF(T)YaRPALY
ONLY = PIVAF(TY + (XeXNNRE(TY)aPOY
FANTTE

PAL YV = PALY
TF (XKNEFRV _FN_ 1) PALYV = NPNLY
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